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ABSTRACT:
One of the existing problems in the area of medical
sciences is related to classifying pathogenic and non-
pathogenic human bacteria; however with the
emergence of vector support machines it is possible
to optimize this task in an automated way by class
separation in space called hyperplanes. In this regard,
the article evaluates the performance presented when
classifying bacteria using the polynomial kernel and
Gaussian radial base functions. The results identified
a better SVM performance when setting parameters
within the biclass classification is performed using a
polynomial kernel.
Keywords: Support vector machine, algorithm,
biclass classification, kernel, pathogenicity

RESUMEN:
Uno de los problemas existentes en el área de las
ciencias médicas se relaciona con la clasificación de
bacterias patógenas y no patógenas humanas; no
obstante con la aparición de las máquinas de soporte
vectorial se tiene la posibilidad de optimizar dicha
tarea de manera automatizada mediante la
separación de clases en el espacio llamados
hiperplanos. En este sentido el artículo evalúa el
rendimiento presentado al clasificar bacterias
utilizando las funciones kernel polinomial y base radial
gaussiana. Los resultados permitieron identificar un
mejor desempeño de la SVM cuando el ajuste de
parámetros dentro de la clasificación biclase se realiza
con el uso de un kernel polinomial.
Palabras clave: Máquinas de soporte vectorial,
algoritmo, clasificación biclase, núcleo,

1. Introduction
Most bacteria are harmless to their hosts, but there are some that are pathogenic. Bacteria
are grouped into taxonomic categories. Members of these categories have a sequence of
orthogonal genes in some cases similar, which may indicate some information about their
behavior. Although there has been major progress in understanding bacterial pathogenesis,
there is still not enough information about what makes a bacterium a human pathogenic.
With the advent of sequencing technologies, the number of complete bacterial genomes has
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increased dramatically. This information is now available to investigate genetic
characteristics that determine pathogenic phenotypes in bacteria (Iraola et al., 2012). This
scenario implicitly raises the need to develop possible automated solutions to one of the
problems of interest in medicine that is related to discrimination of bacteria in "human
pathogenic and non-pathogenic". The above can be carried out by using classification
algorithms and gene databases related to virulence, whose values depend on whether they
are present or absent in the sequencing pattern. Likewise, the data processing tools, as well
as the analysis of results, are very important to reach conclusions about the classification
and composition of the genomic base. In this regard, results found when designing a
pathogenic biclass bacteria classification system by using Support Vector Machine are
socialized. (SVMs) (Rivas et al., 2017).
 

2. Methodology
To classify of bacteria into human pathogenic and non-pathogenic, the cross-validation
validation method (Mathworks, 2016) has been used (Sammut and Webb, 2010), which
consists of dividing the set of samples into subsets, where only a single subset is evaluated
against the other training subsets during each iteration. The test subset changes in each
iteration and the performance measures are calculated and finally averaged. This procedure
is used for each of the configurations of the SVM coefficients and their respective kernels.
Finally, the best results in performance measures will be taken into account to select the
kernel and its most appropriate configuration. The general scheme of the SVM biclass model
developed is shown in figure 1.

Figure 1
General flow chart scheme

It is important to emphasize that according to the kernel function that is used in the
algorithm, there are free parameters that can be adjusted. By varying these parameters
(known as the SVM training event) you can find the values so that the generated classifier is
the best and thus adequately predict the patterns that you wish to classify (Camacho,
2013). In this sense the SVM tries to find an optimal separation hyperplane, where the
margin is the highest among the groups to classify. To implement the SVM we used the
Matlab programming language that has the linear kernel, quadratic, polynomial and
Gaussian radial base functions implemented; and in order to determine which function had
the best performance (from the metrics described in figure 1), each of these kernels was



evaluated by adjusting the respective free parameters. To adjust the parameters we used
the grid-search method (Chih-Jen, 2003) which consists in the use of a mesh where the
values of the SVM parameters are tested and the most accurate configuration obtained when
using the cross-validation validation method is selected.
 
2.1. Performance evaluation variables for SVM classification.
Metrics taken into account for the classification tests in the present project are: Accuracy,
Matthews correlation coefficient (MCC), Recall, Specifity, Positive Predictive Value (PPV).
These measures are built based on the following values (Classeval-wordpress, 2017):

2.2. Characteristics of the biclass classification database.
It consists of a set of data comprising a list of 741 bacterial patterns with their
corresponding true labels. Each pattern consists of a sequence of 120 genes, which were
reduced from a larger set of 814 genes in the work developed in Iraola et al. (2012) to
increase the efficiency of both classification performances, as in computer processing. This



data set was obtained from the database that accompanies the software Bacfier_v1_0.zip of
free distribution, developed by the authors of the work and available in Iraola et al. (2012).
Figure 2 illustrates the distribution of samples.

Figure 2
Distribution of samples according to pathogenicity

 

3. Results
Tables 1 to 3 show the results of the adjustment meshes of free parameters (c, d)  found
with the polynomial kernel for human pathogenicity classification, and in Tables 4 to 6 the
results for the Gaussian radial base (c, γ) kernel function, in accordance with what is
established in Camacho (2013). Due to lack of space the results found with the linear and
quadratic kernel are not included.
In each case, in order to determine the best performance for the metrics (Accuracy MMC,
Recall, Specifity and PPV) the respective free parameters were adjusted; and to adjust these
parameters the "grid search" method was used, which consists in the use of a mesh where
the values of the SVM parameters are being tested and the configuration with the best
precision obtained when using the cross-validation method is selected.

Table 1
Mesh to set the parameters of the Accuracy and 
MCC variables for the polynomial kernel function.

---

Table 2
Mesh to set the Recall and Specifity variable 

parameters for the polynomial Kernel function.



-----

Table3
Mesh for setting PPV variable parameters 

for the polynomial kernel Function

At this point it is important to note that although the polynomial kernel function has more
than two free parameters, it was decided to use only parameters c and d, due to the
difficulties that would arise to form the mesh (Camacho, 2013). It should be noted that for
the different tables the regularization parameter c, is the variable that establishes the
relationship between the training error and the complexity of the model (the higher the
value of c, the more complex the model and the lower the training error, its value typically
varies between 0 and 1); the parameter d, is related to the degree of the polynomial and as
its value increases the classification surface becomes more complex and its value in the
tests was limited to a maximum of 5 due to the restrictions in the computation processing;
and the metric γ, is responsible for controlling the shape of the separation hyperplane.

Table 4
Grid to set the Accuracy and MCC variable parameters

for the Gaussian radial basis kernel function.



-----

Table 5
Grid to set the Recall and Specifity variable parameters

for the Gaussian radial basis kernel function

-----

Table 6
Grid for setting PPV variable parameters for 

Gaussian radial basis kernel function



3.1. Analysis of results and discussion
In the SVM biclass corresponding to the problem of classifying patterns between the human
pathogenic class and non-human pathogenic class, a series of performance measures that
have been calculated for each of the configurations of parameters free of SVM and the kernel
were taken into account (as seen in Tables 1 to 6), which allowed to determine the best
configuration in terms of performance in the classification (López et al., 2017).
Initially when analyzing the conformation of the data set, it can be observed that comparing
the number of patterns of the human pathogenic class (348 patterns) with those of the 
  non-human pathogenic class (393 patterns), there is no problem of significant sample
imbalance, that does occur in similar approaches of biclass classification as in the case of
cancer detection addressed by Laza and Pavón (2009), which has few samples of sick
patient class as opposed to the large number of samples of the healthy patient class, and in
which the idea is expressed that the global error tries to be reduced by the classifier without
taking into account the data distribution. Likewise, the number of samples of the training set
is large (741 * 0.9 = 667 patterns for training), which translates into a low variance, and
that the number of characteristics is also large, ensuring that there is sufficient
discrimination information and low oscillation in the algorithm. By having a low variance and
oscillation, a good performance is obtained in the test set. It should also be noted that
although the number of features is relatively large, the number of samples is higher, which
largely prevents over fitting. Measures or metrics taken into account to measure classifier
performance with the "cross-validation" method described above in Figure 1.
In this regard, in the first instance observing the Accuracy measure, shown in the left part of
Tables 1 and 4, and corresponding to the classifier global performance measurement, it can
be seen that the best configuration corresponds to the polynomial kernel with free
parameters  and .
The second measure observed globally regarding the classification is the metric called MCC
(located on the right side of tables 1 and 4) which relates to the binary classifications quality
measurement;  it shows that the highest values are in the polynomial kernel, largely
corroborating the results obtained with the  Accuracy variable.
Comparing the measurements obtained for Recall and Specifity of Tables 2 and 5 metric, are
measures focused on one of the classes; for the binary classification problem raised, the
human pathogenic class corresponds to the Recall variable and the non-pathogenic human
class corresponds to the Specifity metric. The best reported Recall values are those who
correspond to the Gaussian kernel (100% Recall), but all of the other performance measure
values are not the best, so it can be concluded that the kernel that performs best is the
polynomial with a 98% performance for the free parameters configuration (see left part of
table 2). Regarding the Specifity variable it can be seen that the best configuration is also



the polynomial with a performance of 94.5%.
Finally, the PPV metric is taken into account in the analysis (tables 3 and 6), also called
precision, whose best performance is the polynomial configuration with 95.2% performance.
According to Bridge Derek, the Recall and PPV measures are focused on the positive class
(usually), that for the approach of this research is the human pathogenic class, which is
special with respect to the nature of the problem. Similarly, sensitivity is the proportion of
examples of the positive kind which are correctly classified, and the positive predictive value
(PPV) is the proportion of examples of the positive class assigned to this class which are
properly classified. According to (Ng, 2015), the two measures are robust in terms of
influences that can be derived from the imbalance of classes should this occur in a
significant way, since these measures give a better understanding of the predictor algorithm
performance, because if in some case the situation arises that the classifier predicts few or
no true positives, the sensitivity would give a low value, which would indicate a bad
classification on the class and therefore a low performance of the classified. The results
described above indicate that in terms of evaluating the classification performance, the best
kernel is the polynomial, and that the best configuration of parameters within it is  y , since
most of the best metrics are in that configuration. Regarding the computational cost, it was
established that the polynomial kernel is not the most adequate, since it needs a greater
number of iterations than the Gaussian kernel to carry out the classification.

4. Conclusions
Taking as a reference the results found in the investigation, it was concluded that biclass
SVMs are a good bacteria system classifying by pathogenicity when the kernel configuration
is polynomial; however, it has the disadvantage of requiring higher data processing capacity
compared to using a Gaussian radial basis kernel. For this reason it is interesting to continue
evaluating other types of models or methodologies such as those based on deep learning,
Bayesian networks, Anfis systems in order to maintain or improve bacteria classification
performance but seeking to reduce the number of iterations required for data processing.
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